Skip to content

Publications

2024


Low-Voltage Acidic CO2 Reduction Enabled by a Diaphragm-Based Electrolyzer

A. Perazio, Moritz W. Schreiber, C. E. Creissen*, M. Fontecave*
ChemElectroChem, 2024, 11, e202400045
DOI: 10.1002/celc.202400045

Multiscale Effects in Tandem CO2 Electrolysis to C2+ Products

Lewis S. Cousins,  Charles E. Creissen*
Nanoscale, 2024, 16, 3915-3925
DOI: 10.1039/d3nr05547g

Juggling Optoelectronics and Catalysis: The Dual Talents of Bench Stable 1,4-Azaborinines

Chloe M. van Beek, Amelia M. Swarbrook, Charles E. Creissen, Chris S. Hawes, Theodore A. Gazis*, Peter D. Matthews*
Chem. Eur. J, 2024, 30, e202301944
DOI: 10.1002/chem.202301944

2023



Acidic Electroreduction of CO2 to Multi-Carbon Products with CO2 Recovery and Recycling from Carbonate

Alessandro Perazio ,  Charles E. Creissen* ,  José Guillermo Rivera de la Cruz ,  Moritz W. Schreiber , and  Marc Fontecave*
ACS Energy Letters, 2023, 8, 2979-2985
DOI: 10.1021/acsenergylett.3c00901


Molecular Catalysts Immobilised on Photocathodes for Solar Fuel Generation

C. E. Creissen*
Book Chapter in Recent Developments in Functional Materials for Artificial Photosynthesis, 2023, pp. 120-156. The Royal Society of Chemistry
DOI: 10.1039/9781839167768-00120

2022


Molecular inhibition for selective CO2 conversion

C. E. Creissen, J. G. Rivera de la Cruz, D. Karapinar, D. Taverna, M. W. Schreiber, M. Fontecave*
Angew. Chem. Int. Ed., 2022, 61, e202206279
DOI: 10.1002/anie.202206279

Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction

C. E. Creissen*, M. Fontecave*
Nature Communications, 2022, 13, 2280
DOI: 10.1038/s41467-022-30027-x

From Ni foam to highly active NiFe‑based oxygen evolution catalysts

A. Peugeot, C. E. Creissen, M. Schreiber, M. Fontecave*
Chem Electro Chem, 2022, 9, e202200148
DOI:10.1002/celc.202200148

2020 – 2021


Advancing the anode compartment for energy efficient CO2 reduction at neutral pH

A. Peugeot, C. E. Creissen, M. Schreiber, M. Fontecave*
Chem Electro Chem, 2021, 8, 2726-2736
DOI:10.1002/celc.202100742

Benchmarking of oxygen evolution catalysts on porous Ni supports

A. Peugeot, C. E. Creissen, D. Karapinar, H. N. Tran, M. Schreiber, M. Fontecave*
Joule, 2021, 5, 1281-1300
DOI: 10.1016/j.joule.2021.03.022

Electrochemical CO2 reduction to ethanol with copper-based catalysts

D. Karapinar, C. E. Creissen, J. G. Rivera de la Cruz, M. W. Schreiber, M. Fontecave*
ACS Energy Lett., 2021, 6, 694-706
DOI: 10.1021/acsenergylett.0c02610

Solar-driven electrochemical CO2 reduction with heterogeneous catalysts

C. E. Creissen*, M. Fontecave*
Advanced Energy Materials, 2021, 11, 2002652
DOI: 10.1002/aenm.202002652

2016 – 2019


Inverse opal CuCrO2 photocathodes for H2 production using organic dyes and a molecular Ni catalyst

C. E. Creissen, J. Warnan, D. Antón-García, Y. Farré, F. Odobel, E. Reisner*
ACS Catalysis, 2019, 9, 9530-9538
DOI: 10.1021/acscatal.9b02984

ZnSe nanorods as a visible-light-absorber for photocatalytic and photoelectrochemical H2 evolution in water

M. F. Kuehnel1, C. E. Creissen1, C. D. Sahm1, D. Wielend, A. Schlosser, K. L. Orchard, E. Reisner* (1joint authorship)
Angew. Chem. Int. Ed., 2019, 58, 5059-5063
DOI: 10.1002/anie.201814265

Single‐source bismuth (transition metal) polyoxovanadate precursors for the scalable synthesis of doped BiVO4 photoanodes

H. Liu, V. Andrei, K. J. Jenkinson, A. Regoutz, N. Li, C. E. Creissen, A. E. Wheatley, H. Hao, E. Reisner*, D. S. Wright*, S. D. Pike*
Adv. Mater., 2018, 30, 1804033,
DOI: 10.1002/adma.201804033

Solar H2 generation in water with a CuCrO2 photocathode modified with an organic dye and molecular Ni catalyst

C. E. Creissen, J. Warnan, E. Reisner*
Chem. Sci., 2018, 9, 1439-1447,
DOI: 10.1039/C7SC04476C

Photoelectrochemical hydrogen production in water using a layer-by-layer assembly of a Ru dye and Ni catalyst on NiO

M. A. Gross, C. E. Creissen, K. L. Orchard, E. Reisner*
Chem. Sci., 2016, 7, 5537-5546
DOI: 10.1039/C6SC00715E