Publications
2024
Low-Voltage Acidic CO2 Reduction Enabled by a Diaphragm-Based Electrolyzer
A. Perazio, Moritz W. Schreiber, C. E. Creissen*, M. Fontecave*
ChemElectroChem, 2024, 11, e202400045
DOI: 10.1002/celc.202400045
Multiscale Effects in Tandem CO2 Electrolysis to C2+ Products
Lewis S. Cousins, Charles E. Creissen*
Nanoscale, 2024, 16, 3915-3925
DOI: 10.1039/d3nr05547g
Juggling Optoelectronics and Catalysis: The Dual Talents of Bench Stable 1,4-Azaborinines
Chloe M. van Beek, Amelia M. Swarbrook, Charles E. Creissen, Chris S. Hawes, Theodore A. Gazis*, Peter D. Matthews*
Chem. Eur. J, 2024, 30, e202301944
DOI: 10.1002/chem.202301944
2023
Acidic Electroreduction of CO2 to Multi-Carbon Products with CO2 Recovery and Recycling from Carbonate
Alessandro Perazio , Charles E. Creissen* , José Guillermo Rivera de la Cruz , Moritz W. Schreiber , and Marc Fontecave*
ACS Energy Letters, 2023, 8, 2979-2985
DOI: 10.1021/acsenergylett.3c00901
Molecular Catalysts Immobilised on Photocathodes for Solar Fuel Generation
C. E. Creissen*
Book Chapter in Recent Developments in Functional Materials for Artificial Photosynthesis, 2023, pp. 120-156. The Royal Society of Chemistry
DOI: 10.1039/9781839167768-00120
2022
Molecular inhibition for selective CO2 conversion
C. E. Creissen, J. G. Rivera de la Cruz, D. Karapinar, D. Taverna, M. W. Schreiber, M. Fontecave*
Angew. Chem. Int. Ed., 2022, 61, e202206279
DOI: 10.1002/anie.202206279
Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction
C. E. Creissen*, M. Fontecave*
Nature Communications, 2022, 13, 2280
DOI: 10.1038/s41467-022-30027-x
From Ni foam to highly active NiFe‑based oxygen evolution catalysts
A. Peugeot, C. E. Creissen, M. Schreiber, M. Fontecave*
Chem Electro Chem, 2022, 9, e202200148
DOI:10.1002/celc.202200148
2020 – 2021
Advancing the anode compartment for energy efficient CO2 reduction at neutral pH
A. Peugeot, C. E. Creissen, M. Schreiber, M. Fontecave*
Chem Electro Chem, 2021, 8, 2726-2736
DOI:10.1002/celc.202100742
Benchmarking of oxygen evolution catalysts on porous Ni supports
A. Peugeot, C. E. Creissen, D. Karapinar, H. N. Tran, M. Schreiber, M. Fontecave*
Joule, 2021, 5, 1281-1300
DOI: 10.1016/j.joule.2021.03.022
Electrochemical CO2 reduction to ethanol with copper-based catalysts
D. Karapinar, C. E. Creissen, J. G. Rivera de la Cruz, M. W. Schreiber, M. Fontecave*
ACS Energy Lett., 2021, 6, 694-706
DOI: 10.1021/acsenergylett.0c02610
Solar-driven electrochemical CO2 reduction with heterogeneous catalysts
C. E. Creissen*, M. Fontecave*
Advanced Energy Materials, 2021, 11, 2002652
DOI: 10.1002/aenm.202002652
2016 – 2019
Inverse opal CuCrO2 photocathodes for H2 production using organic dyes and a molecular Ni catalyst
C. E. Creissen, J. Warnan, D. Antón-García, Y. Farré, F. Odobel, E. Reisner*
ACS Catalysis, 2019, 9, 9530-9538
DOI: 10.1021/acscatal.9b02984
ZnSe nanorods as a visible-light-absorber for photocatalytic and photoelectrochemical H2 evolution in water
M. F. Kuehnel1, C. E. Creissen1, C. D. Sahm1, D. Wielend, A. Schlosser, K. L. Orchard, E. Reisner* (1joint authorship)
Angew. Chem. Int. Ed., 2019, 58, 5059-5063
DOI: 10.1002/anie.201814265
Single‐source bismuth (transition metal) polyoxovanadate precursors for the scalable synthesis of doped BiVO4 photoanodes
H. Liu, V. Andrei, K. J. Jenkinson, A. Regoutz, N. Li, C. E. Creissen, A. E. Wheatley, H. Hao, E. Reisner*, D. S. Wright*, S. D. Pike*
Adv. Mater., 2018, 30, 1804033,
DOI: 10.1002/adma.201804033
Solar H2 generation in water with a CuCrO2 photocathode modified with an organic dye and molecular Ni catalyst
C. E. Creissen, J. Warnan, E. Reisner*
Chem. Sci., 2018, 9, 1439-1447,
DOI: 10.1039/C7SC04476C
Photoelectrochemical hydrogen production in water using a layer-by-layer assembly of a Ru dye and Ni catalyst on NiO
M. A. Gross, C. E. Creissen, K. L. Orchard, E. Reisner*
Chem. Sci., 2016, 7, 5537-5546
DOI: 10.1039/C6SC00715E